

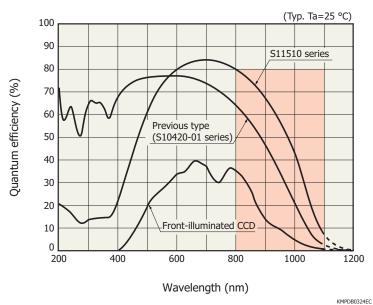
IR-enhanced CCD image sensors

S11510 series

Enhanced near infrared sensitivity: QE=40% ($\lambda=1000$ nm)

The S11510 series is a family of FFT-CCD image sensors for photometric applications that offer improved sensitivity in the near infrared region at wavelengths longer than 800 nm. Forming a MEMS structure on the back side of the CCD allows the S11510 series to have much higher sensitivity than our previous products (S10420-01 series).

In addition to having high infrared sensitivity, the S11510 series can be used as an image sensor with a long active area in the direction of the sensor height by binning operation, making it suitable for detectors in Raman spectroscopy. Binning operation also ensures even higher S/N and signal processing speed compared to methods that use an external circuit to add signals digitally.


The S11510 series has a pixel size of 14 \times 14 μ m and is available in two image areas of 14.336 (H) \times 0.896 (V) mm (1024 \times 64 pixels) and 28.672 (H) \times 0.896 (V) mm (2048 \times 64 pixels). The S11510 series is pin compatible with the S10420-01 series, and so operates under the same drive conditions.

Applications

Raman spectrometers, etc.

Features

- Enhanced near infrared sensitivity: QE=40% (λ=1000 nm)
- High CCD node sensitivity: 6.5 μV/e⁻
- High full well capacity and wide dynamic range (with anti-blooming function)
- Pixel size: 14 × 14 μm
- MPP operation

Spectral response (without window)*1

*1: Spectral response with quartz glass is decreased according to the spectral transmittance characteristic of window material.

1

Structure

Parameter	S11510-1006	S11510-1106			
Pixel size $(H \times V)$	14 × 14 µm				
Number of total pixels $(H \times V)$	1044 × 70	2068 × 70			
Number of effective pixels $(H \times V)$	1024 × 64	2048 × 64			
Image size $(H \times V)$	14.336 × 0.896 mm	28.672 × 0.896 mm			
Vertical clock phase	2-phase				
Horizontal clock phase	4-phase				
Output circuit	One-stage MOSFET source follower				
Package	24-pin ceramic DIP (refer to dimensional outline)				
Window	Quartz glass*2				
Coooling	Non-cooled				

*2: Resin sealing

- Absolute maximum ratings (Ta=25 °C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating temperature*3	Topr	-50	-	+50	°C
Storage temperature	Tstg	-50	-	+70	°C
Output transistor drain voltage	Vod	-0.5	-	+30	V
Reset drain voltage	Vrd	-0.5	-	+18	V
Over flow drain voltage	VOFD	-0.5	-	+18	V
Vertical input source voltage	VISV	-0.5	-	+18	V
Horizontal input source voltage	VISH	-0.5	-	+18	V
Over flow gate voltage	Vofg	-10	-	+15	V
Vertical input gate voltage	VIG1V, VIG2V	-10	-	+15	V
Horizontal input gate voltage	VIG1H, VIG2H	-10	-	+15	V
Summing gate voltage	Vsg	-10	-	+15	V
Output gate voltage	Vog	-10	-	+15	V
Reset gate voltage	VRG	-10	-	+15	V
Transfer gate voltage	Vtg	-10	-	+15	V
Vertical shift register clock voltage	VP1V, VP2V	-10	-	+15	V
Horizontal shift register clock voltage	Vp1h, Vp2h Vp3h, Vp4h	-10	-	+15	V

*3: Package temperature

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

Operating conditions (MPP mode, Ta=25 °C)

Parameter		Symbol	Min.	Тур.	Max.	Unit		
Output transistor drain voltage		Vod	23	24	25	V		
Reset drain voltage			Vrd	11	12	13	V	
Over flow drain volta	age		Vofd	11	12	13	V	
Over flow gate volta	ge		Vofg	0	12	13	V	
Output gate voltage			Vog	4	5	6	V	
Substrate voltage			Vss	-	0	-	V	
	Input source		VISV, VISH	-	Vrd	-	V	
Test point	Vertical input gate	2	VIG1V, VIG2V	-9	-8	-	V	
	Horizontal input g	ate	Vig1h, Vig2h	-9	-8	-	V	
Vortical chift register		High	Vp1vh,Vp2vh	4	6	8	V	
vertical shirt register	/ertical shift register clock voltage		VP1VL, VP2VL	-9	-8	-7	v	
Horizontal chift rogic	High		Vp1нн, Vp2нн Vp3нн, Vp4нн	4	6	8	v	
Horizontal shift register clock voltage		Low	Vp1hl, Vp2hl Vp3hl, Vp4hl	-6	-5	-4	V	
Summing gate volta	Summing gate voltage		Vsgh	4	6	8	- V	
Summing gate voltag			VSGL	-6	-5	-4	v	
Depat anto valtago	Reset gate voltage		Vrgh	4	6	8	V	
Resel gale vollage			VRGL	-6	-5	-4	v	
Transfer gate voltage		High	Vtgh	4	6	8	V	
		Low	Vtgl	-9	-8	-7		
External load resista	nce		RL	90	100	110	kΩ	

Electrical characteristics (Ta=25 °C)

Parameter		Symbol	Min.	Тур.	Max.	Unit
Signal output frequency		fc	-	0.25	0.5	MHz
Vertical shift register	-1006		-	600	-	nE
capacitance	-1106	CP1V, CP2V	-	1200	-	- pF
Horizontal shift register	-1006	Ср1н, Ср2н	-	80	-	nE
capacitance	-1106	Срзн, Ср4н	-	160	-	- pF
Summing gate capacitance		Csg	-	10	-	pF
Reset gate capacitance		Crg	-	10	-	pF
Transfor gato canacitanco	-1006	C770	-	30	-	nE
Transfer gate capacitance	-1106	Стб	-	60	-	- pF
Charge transfer efficiency*4		CTE	0.99995	0.99999	-	-
DC output level		Vout	17	18	19	V
Output impedance		Zo	-	10	-	kΩ
Power consumption*5		Р	-	4	-	mW

*4: Charge transfer efficiency per pixel, measured at half of the full well capacity

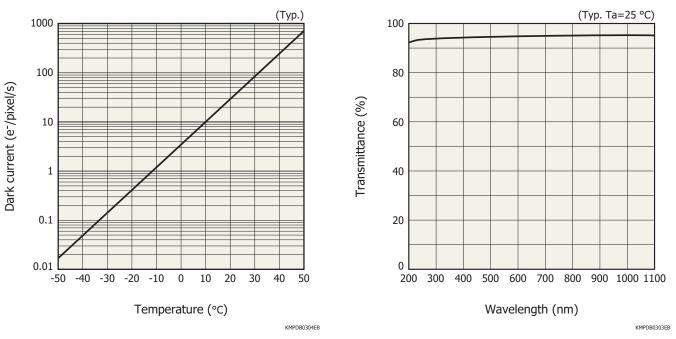
*5: Power consumption of the on-chip amplifier plus load resistance

Electrical and optical characteristics (Ta=25 °C, unless otherwise noted)

Parameter		Symbol	Min.	Тур.	Max.	Unit
Saturation output voltage		Vsat	-	Fw × Sv	-	V
	Vertical	Fw	50	60	-	ke-
Full well capacity	Horizontal		250	300	-	ke⁻
CCD node sensitivity		Sv	5.5	6.5	7.5	µV/e⁻
Dark current*6		DS	-	50	200	e-/pixel/s
Readout noise*7		Nr	-	6	15	e⁻ rms
Dynamic range*8	Line binning	Drange	41700	50000	-	-
Spectral response range		λ	-	200 to 1100	-	nm
Photoresponse nonuniformity*9		PRNU	-	±3	±10	%

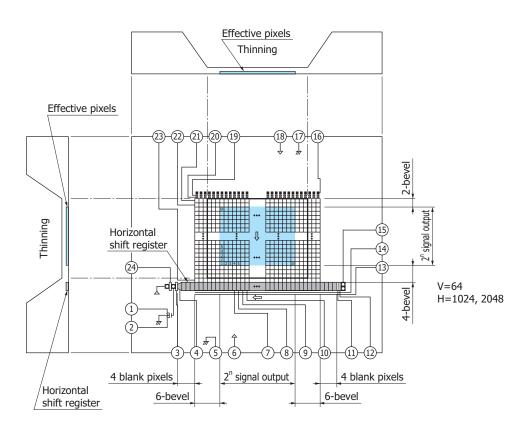
*6: Dark current nearly doubles for every 5 to 7 °C increase in temperature. *7: Temperature: -40 °C, readout frequency: 20 kHz

*8: Dynamic range = Full well capacity / Readout noise


*9: Measured at one-half of the saturation output (full well capacity) using LED light (peak emission wavelength: 660 nm)

Fixed pattern noise (peak to peak) × 100 [% Photoresponse nonuniformity =

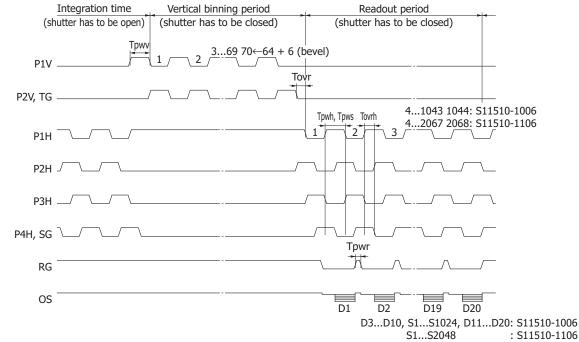
Signal


S11510 series

Dark current vs. temperature

Spectral transmittance characteristic of window material

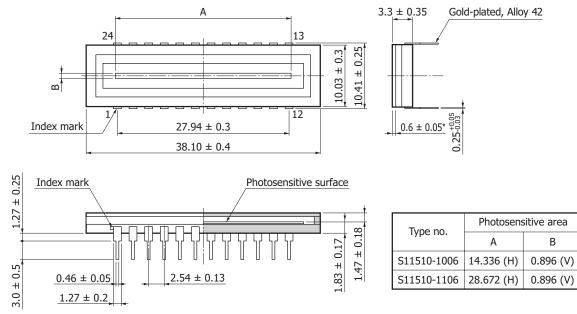
Device structure (conceptual drawing of top view in dimensional outline)



Note: When viewed from the direction of the incident light, the horizontal shift register is covered with a thick silicon layer (dead layer). However, long-wavelength light passes through the silicon dead layer and may possibly be detected by the horizontal shift register. To prevent this, provide light shield on that area as needed.

KMPDC0365EB

Timing chart (line binning)


KMPDC0355EA

Para	Symbol	Min.	Тур.	Max.	Unit	
	Pulse width*10	Tpwv	6	8	-	μs
P1V, P2V, TG	Rise and fall times*10	Tprv, Tpfv	20	-	-	ns
	Pulse width*10	Tpwh	1000	2000	-	ns
P1H, P2H, P3H, P4H	Rise and fall times*10	Tprh, Tpfh	10	-	-	ns
PIN, PZN, PSN, P4N	Pulse overlap time	Tovrh	500	1000	-	ns
	Duty ratio*10	-	40	50	60	%
	Pulse width*10	Tpws	1000	2000	-	ns
50	Rise and fall times*10	Tprs, Tpfs	10	-	-	ns
SG	Pulse overlap time	Tovrh	500	1000	-	ns
	Duty ratio*10	-	40	50	60	%
DC	Pulse width	Tpwr	100	1000	-	ns
RG	Rise and fall times	Tprr, Tpfr	5	-	-	ns
TG-P1H	Overlap time	Tovr	1	2	-	μs

*10: Symmetrical clock pulses should be overlapped at 50% of maximum pulse amplitude.

Dimensional outline (unit: mm)

* Glass thickness (refractive index \approx 1.5)

KMPDA0265EB

Pin connections

Pin no.	Symbol	Function	Remark (standard operation)
1	OS	Output transistor source	RL=100 kΩ
2	OD	Output transistor drain	+24 V
3	OG	Output gate	+5 V
4	SG	Summing gate	Same pulse as P4H
5	SS	Substrate	GND
6	RD	Reset drain	+12 V
7	P4H	CCD horizontal register clock-4	
8	P3H	CCD horizontal register clock-3	
9	P2H	CCD horizontal register clock-2	
10	P1H	CCD horizontal register clock-1	
11	IG2H	Test point (horizontal input gate-2)	-8 V
12	IG1H	Test point (horizontal input gate-1)	-8 V
13	OFG	Over flow gate	+12 V
14	OFD	Over flow drain	+12 V
15	ISH	Test point (horizontal input source)	Connect to RD
16	ISV	Test point (vertical input source)	Connect to RD
17	SS	Substrate	GND
18	RD	Reset drain	+12 V
19	IG2V	Test point (vertical input gate-2)	-8 V
20	IG1V	Test point (vertical input gate-1)	-8 V
21	P2V	CCD vertical register clock-2	
22	P1V	CCD vertical register clock-1	
23	TG	Transfer gate	Same pulse as P2V
24	RG	Reset gate	

Precautions (electrostatic countermeasures)

- · When handling CCD sensors, always wear a wrist strap and also anti-static clothing, gloves, and shoes, etc. The wrist strap should have a protective resistor (about 1 M Ω) on the side closer to the body and be grounded properly. Using a wrist strap having no protective resistor is hazardous because you may receive an electrical shock if electric leakage occurs.
- Avoid directly placing these sensors on a work bench that may carry an electrostatic charge.
- · Provide ground lines with the work bench and work floor to allow static electricity to discharge.
- Ground the tools used to handle these sensors, such as tweezers and soldering irons.

It is not always necessary to provide all the electrostatic measures stated above. Implement these measures according to the amount of damage that occurs.

Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions
 - Disclaimer
 - Image sensors

Technical information

· FFT-CCD area image sensor

Driver circuit for CCD image sensor (S11510 series) C11287 [sold separately]

The C11287 is a driver circuit designed for HAMAMATSU CCD image sensors S11510 series. The C11287 can be used in spectrometers, etc. when combined with the CCD image sensor.

Features

- Built-in 14-bit A/D converter
- Interface to computer: USB 2.0
- Power supply: USB bus power operation

Information described in this material is current as of December 2017.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81) 53-434-3311, Fax: (81) 53-434-5184

1126-1 ICHINO-CRIO, HIgdShirkU, Halmathatsu City, 435-8558 Japah, 1 ellephone: (31) 53-434-3311, FdX: (31) 53-434-314, FdX: (31) 53-

7

