

# 96kHz 24 位 ΔΣADC

# 产品简述

MS5358 是带有采样速率 8kHz~96kHz 的立体声 A/D 转换器, 适合于面向消费者的专业音频系统。

MS5358 通过使用增强型双位ΔΣ技术来实现其高精度的特点。 MS5358 是单端的模拟输入所以不需要外部器件。

音频接口有两种模式(最高有效位对齐, I2S)适合用于像 DTV, DVR 和 AV 接收器的系统。

#### TSSOP16

### 主要特点

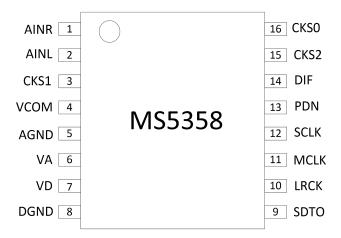
- 线性相位抗混叠数字滤波器
- 单端输入
- 带失调电压消除的数字高通滤波器
- 信噪失真比: 92dB
- 动态范围: 102dB
- 信噪比: 102dB
- 采样速率 8kHZ 到 96kHz
- 主时钟:

256fs/384fs/512fs/768fs (8kHz ~ 48kHz)

256fs/384fs (48kHz ~ 96kHz)

- 输入电平: CMOS
- 主机/从机模式
- 音频接口: 24 位最高有效位对齐/l²S
- 电源: 4.5~5.5V 模拟, 2.7~3.6V 数字
- 温度范围 -40~100°C
- TSSOP16 封装

#### 应用

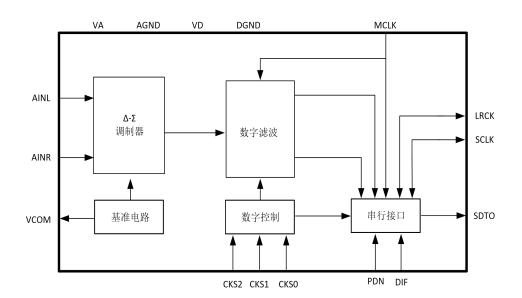

- 音频接口
- DTV、 DVR 和 AV 接收器

### 产品规格分类

| 产品     | 封装形式    | 丝印名称   |
|--------|---------|--------|
| MS5358 | TSSOP16 | MS5358 |



# 管脚图




# 管脚说明

| 管脚编号 | 管脚名称 | 管脚属性 | 管脚描述                          |
|------|------|------|-------------------------------|
| 1    | AINR | I    | Rch 模拟输入引脚                    |
| 2    | AINL | I    | Lch 模拟输入引脚                    |
| 3    | CKS1 | I    | 模式选择1引脚                       |
|      | VCOM | 0    | 共模电压输出引脚,VA/2 的 ADC 输入偏置电压    |
| 4    | AGND | -    | 模拟地引脚                         |
| 5    | VA   | -    | 模拟电源引脚, 4.5~5.5V              |
| 6    | VD   | -    | 数字电源引脚, 2.7~3.6V              |
| 7    | DGND | -    | 数字地引脚                         |
| 8    | SDTO | 0    | 音频串口数据输出引脚,掉电模式输出为低           |
| 9    | LRCK | I/O  | 输出通道时钟引脚,主机模式下的掉电模式输出为低       |
| 10   | MCLK | I    | 主时钟输入引脚                       |
| 11   | SCLK | I/O  | 音频串口数据时钟引脚,主机模式下的掉电模式输出为低     |
|      |      |      | 掉电模式&复位模式, "H": 上电,           |
| 12   | PDN  | I    | "L": 掉电&复位。MS5358 在上电后必须复位一次  |
|      |      |      | 音频接口类型选择引脚                    |
| 13   |      |      | "H": 24 位兼容 I <sup>2</sup> S, |
|      | DIF  | I    | "L": 24 位最高有效位对齐              |
| 14   | CKS2 | I    | 模式选择 2 引脚                     |
| 15   | CKS0 | I    | 模式选择 0 引脚                     |
| 16   | AINR | I    | Rch 模拟输入引脚                    |



# 内部框图





# 极限参数

芯片使用中,任何超过极限参数的应用方式会对器件造成永久的损坏,芯片长时间处于极限工作 状态可能会影响器件的可靠性。极限参数只是由一系列极端测试得出,并不代表芯片可以正常工作在 此极限条件下。

AGND, DGND =  $0V^{(1)}$ 

|               | 参数              | 符号   | 额定值           | 单位 |
|---------------|-----------------|------|---------------|----|
|               | 模拟              | VA   | -0.3 ~ 6.0    | V  |
| 供电电压          | 数字              | VD   | -0.3 ~ 4.6    | V  |
|               | AGND – DGND (2) | ΔGND | 0.3           | V  |
| 除了电源之外,       | 任何引脚的输入电流       | IIN  | ±10           | mA |
| 模拟输入电压        |                 |      |               |    |
| (AINL、AINR、CI | KS1 引脚)         | VINA | -0.3 ~ VA+0.3 | V  |
| 数字输入电压(3)     |                 | VIND | -0.3 ~ VD+0.3 | V  |
| 环境温度          |                 | Та   | -40 ~ 105     | °C |
| 存储温度          |                 | Tstg | -65 ~ 150     | °C |

- (1)所有的电压都以地为基准
- (2) AGND和DGND必须连接到同一个模拟地
- (3) PDN、DIF、MCLK、SCLK、LRCK、CKSO、CKS2引脚



# 电气参数

### 推荐工作电压

AGND,DGND = 0V

| 参数                      |    | 参数 符号 最小值 典型值 |     | 最大值 | 单位  |   |
|-------------------------|----|---------------|-----|-----|-----|---|
| # <b>+</b> + <b>- -</b> | 模拟 | VA            | 4.5 |     | 5.5 | V |
| 供电电压                    | 数字 | VD            | 2.7 |     | 3.6 | V |

VA 和 VD 的上电顺序没有明确要求

#### 无用引脚处理

| / J / 14 4 1 / 1 / 2 - 12 - 12 - 12 - 12 - 12 - 12 |      |        |
|----------------------------------------------------|------|--------|
| 类别                                                 | 管脚名称 | 设置     |
| 模拟                                                 | AINR | 引脚应该开路 |
|                                                    | AINL | 引脚应该开路 |

#### 模拟特性

除非特别说明, Ta = 25°C; VA = 5.0V, VD = 3.3V, AGND = DGND = 0V; fs = 48kHz, 96kHz; SCLK = 64fs; 信号频率 = 1kHz; 24 位数据;在 fs=48kHz 下测量频率为 20Hz~20kHz,fs = 96kHz 下为 40Hz~40kHz。

| 参数              |                   |              | 最小值 | 典型值 | 最大值 | 单位     |
|-----------------|-------------------|--------------|-----|-----|-----|--------|
| ADC 模拟输入特性      | 1 1               | , , <u> </u> |     | , , |     |        |
| 精度              |                   |              |     |     | 24  | Bits   |
| 输入电压(1)         |                   |              | 2.7 | 3.0 | 3.3 | Vpp    |
|                 | fs = 48kHz        | -1dBFS       | 82  | 92  |     | dB     |
| <br>  信噪失真比     | BW = 20kHz        | -60dBFS      |     | 39  |     | dB     |
| 旧'木八共儿          | fs = 96kHz        | -1dBFS       |     | 90  |     | dB     |
|                 | BW = 40kHz        | -60dBFS      |     | 38  |     | dB     |
| 动态范围 (-60dBFS,  | , A-weighted)     |              | 90  | 102 |     | dB     |
| 信噪比 (A-weighted | 1)                |              | 94  | 102 |     | dB     |
| <br>  输入阻抗      | fs = 48kHz        |              | 13  | 20  |     | kΩ     |
| 刊りくとこりに         | fs = 96kHz        |              | 9   | 14  |     | kΩ     |
| 内部通道隔离          |                   |              | 89  | 95  |     | dB     |
| 内部通道增益失配        |                   |              |     | 0.1 | 0.5 | dB     |
| 增益漂移            |                   |              |     | 100 |     | ppm/°C |
| 电源抑制比(2)        |                   |              |     | 50  |     | dB     |
| 供电电源            |                   |              |     |     |     |        |
| 供电电流            |                   |              |     |     |     |        |
| 正常操作 (PDN = "h  | H")               |              |     |     |     |        |
| VA              |                   |              |     | 10  | 16  | mA     |
| VD (fs = 48kHz) |                   |              |     | 2   | 5   | mA     |
| VD (fs = 96kHz) |                   |              |     | 4   | 9   | mA     |
| 掉电模式 (PDN="L    | ") <sup>(3)</sup> |              |     |     |     |        |
| VA+VD           |                   |              |     | 10  | 100 | uA     |

- (1) 这个值是输入电压的全摆幅(OdB),输入电压正比于电压 VA。Vin=0.6\*VA(Vpp)
- (2) 电源抑制比中电源是带有 1kHz, 50mVpp 交流信号的 VA 和 VD
- (3) 所有的数字输入引脚和 CKS1 引脚都是通过 VD 和 DGND 来导通的



### 滤波器特性 fs = 48kHz

Ta =  $-40^{\circ}$ C $\sim$ 100 $^{\circ}$ C; VA = 4.5V $\sim$ 5.5V; VD = 2.7V $\sim$ 3.6V

| 参数                     | 符号               | 最小值 | 典型值 | 最大值  | 单位    |     |  |  |  |
|------------------------|------------------|-----|-----|------|-------|-----|--|--|--|
| ADC 数字滤波器(抽取低通滤波器)     |                  |     |     |      |       |     |  |  |  |
|                        | ±0.1dB           | PB  | 0   |      | 18.9  | kHz |  |  |  |
| 通带 (1)                 | -0.2dB           |     | -   | 20.0 | -     | kHz |  |  |  |
|                        | -3.0dB           |     | -   | 23.0 | -     | kHz |  |  |  |
| 阻带                     |                  | SB  | 28  |      |       | kHz |  |  |  |
| 通带纹波                   |                  | PR  |     |      | ±0.04 | dB  |  |  |  |
| 阻带衰减                   |                  | SA  | 68  |      |       | dB  |  |  |  |
| 群延时失真                  |                  | ΔGD |     | 0    |       | us  |  |  |  |
| 群延时                    | GD               |     | 16  |      | 1/fs  |     |  |  |  |
| ADC 数字滤波器(高通滤波器)       | ADC 数字滤波器(高通滤波器) |     |     |      |       |     |  |  |  |
| der de la companya (a) | -3dB             |     |     | 1.0  |       | Hz  |  |  |  |
| 频率响应 <sup>(2)</sup>    | -0.1dB           | FR  |     | 6.5  |       | Hz  |  |  |  |

### 滤波器特性 fs = 96kHz

Ta =  $-40^{\circ}$ C $\sim$ 100 $^{\circ}$ C; VA = 4.5V $\sim$ 5.5V; VD = 2.7V $\sim$ 3.6V

| 参数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 符号               | 最小值 | 典型值 | 最大值  | 单位    |      |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----|-----|------|-------|------|--|--|
| ADC 数字滤波器(抽取低通滤波器)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |     |     |      |       |      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ±0.1dB           | РВ  | 0   |      | 37.8  | kHz  |  |  |
| 通带(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.2dB           |     | -   | 40.0 | -     | kHz  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3.0dB           |     | -   | 46.0 |       | kHz  |  |  |
| 阻带                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | SB  | 56  |      |       | kHz  |  |  |
| 通带纹波                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | PR  |     |      | ±0.04 | dB   |  |  |
| 阻带衰减                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | SA  | 68  |      |       | dB   |  |  |
| 群延时失真                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | ΔGD |     | 0    |       | us   |  |  |
| 延时                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | GD  |     | 16   |       | 1/fs |  |  |
| ADC 数字滤波器(高通滤波器)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ADC 数字滤波器(高通滤波器) |     |     |      |       |      |  |  |
| 11.77 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11.47 -> 11. | -3dB             |     |     | 2.0  |       | Hz   |  |  |
| 频率响应 <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.1dB           | FR  |     | 13.0 |       | Hz   |  |  |

- (1) 通带和阻带频率随 fs 改变,如: PB=18.9kHz@±0.1dB 是 0.39375\*fs
- (2) 数字滤波引入的计算延时时间

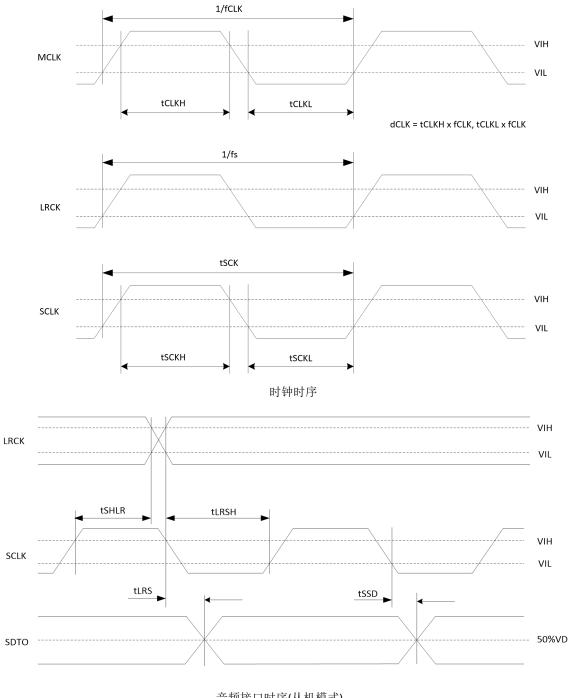


### 直流特性(CMOS 电平模式)

Ta =  $-40^{\circ}$ C $\sim$ 100 $^{\circ}$ C; VA = 4.5V $\sim$ 5.5V; VD = 2.7V $\sim$ 3.6V

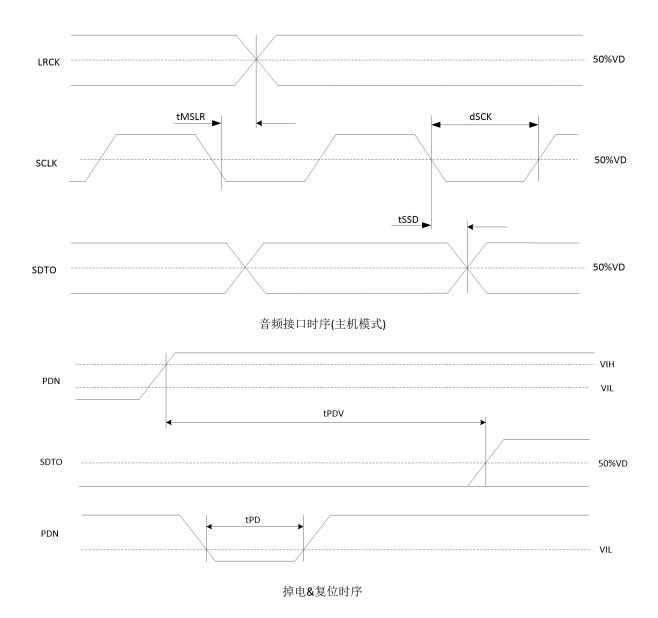
| 参数                  | 符号  | 最小值      | 典型值 | 最大值   | 单位 |
|---------------------|-----|----------|-----|-------|----|
| 输入电压高电平             | VIH | 70%VD    | -   | -     | V  |
| 输入电压低电平             | VIL | -        | -   | 30%VD | V  |
| 输出电压高电平 (lout=-1mA) | VOH | VD - 0.5 | -   | -     | V  |
| 输出电压低电平 (lout=1mA)  | VOL | -        | -   | 0.5   | V  |
|                     |     |          |     |       |    |
| 输入泄漏电流              | lin | -        | -   | ±10   | uA |

### 开关特性


Ta =  $-40^{\circ}$ C $\sim$ 100 °C; VA = 4.5V $\sim$ 5.5V; VD = 2.7V $\sim$ 3.6V; CL=20pF

| 参数                                        | 符号    | 最小值   | 典型值  | 最大值    | 单位   |
|-------------------------------------------|-------|-------|------|--------|------|
| 主时钟时间                                     |       |       |      |        |      |
| 512fs,256fs 频率                            | fCLK  | 2.048 |      | 24.576 | MHz  |
| 占空比                                       | dCLK  | 40    |      | 60     | %    |
| 768fs,384fs 频率                            | fCLK  | 3.072 |      | 36.864 | MHz  |
| 占空比                                       | dCLK  | 40    |      | 60     | %    |
| LRCK 频率                                   | fs    | 8     |      | 96     | kHz  |
| 占空比 从机模式                                  |       | 45    |      | 55     | %    |
| 主机模式                                      |       |       | 50   |        | %    |
| 音频接口时间                                    |       |       |      |        |      |
| 从机模式                                      |       |       |      |        |      |
| SCLK 周期                                   | tSCK  | 160   |      |        | ns   |
| SCLK 低脉冲宽度                                | tSCKL | 65    |      |        | ns   |
| 高脉冲宽度                                     | tSCKH | 65    |      |        | ns   |
| LRCK 边沿到 SCLK"↑" <sup>(1)</sup>           | tLRSH | 30    |      |        | ns   |
| SCLK"↑"到 LRCK 边沿 <sup>(1)</sup>           | tSHLR | 30    |      |        | ns   |
| LRCK 到 SDTO(MSB) (除 I <sup>2</sup> S 模式 ) | tLRS  |       |      | 35     | ns   |
| SCLK"↓"到 SDTO                             | tSSD  |       |      | 35     | ns   |
| 主机模式                                      |       |       |      |        |      |
| SCLK 频率                                   | fSCK  |       | 64fs |        | Hz   |
| SCLK 占空比                                  | dSCK  |       | 50   |        | %    |
| SCLK"↓" 到 LRCK                            | tMSLR | -40   |      | 20     | ns   |
| SCLK"↓" 到 SDTO                            | tSSD  | -40   |      | 35     | ns   |
| 复位时间                                      |       |       |      |        |      |
| PDR 脉冲宽度 <sup>(2)</sup>                   | tPD   | 150   |      |        | ns   |
| 从机模式 PDN"↑"到 SDTO 有效 <sup>(3)</sup>       | tPDV  |       | 4132 |        | 1/fs |
| 主机模式 PDN"↑"到 SDTO 有效 <sup>(3)</sup>       | tPDV  |       | 4129 |        | 1/fs |

- (1) SCLK 的上升沿一定不能在 LRCK 上升和下降沿上
- (2) MS5358 能够通过使 PDN= "L" 来进行复位
- (3) 这个周期是从 PDN="H"之后 LRCK 上升沿数目的时间




# 时序图



音频接口时序(从机模式)







### 功能描述

### 系统时钟

从机模式下需要 MCLK,SCLK 和 LRCK(fs)时钟,LRCK 时钟的输入必须与 MCLK 时钟同步,但是相位不是其关键因素。表 1 显示了典型的采样频率和系统时钟频率的关系。表 2 显示了 MCLK,SCLK 和通过 CKS2-0 引脚来控制的主从机模式。

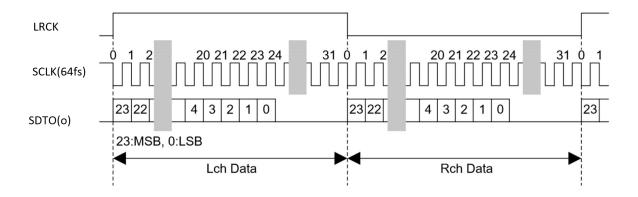
除非 PDN= "L", 所有的外部时钟(MCLK,SCLK,LRCK) 必须存在。如果没有提供这些时钟, MS5358 可能由于使用内部动态刷新逻辑而汲取过量电流。如果外部时钟不存在, 那么 MS5358 需要被置为掉电模式(PDN= "L")。在主模式下,除非 PDN= "L",一定需要提供主时钟(MCLK)。

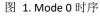
| 衣1. 系统时件学例 |             |             |             |             |  |  |  |  |
|------------|-------------|-------------|-------------|-------------|--|--|--|--|
|            |             | МС          | LK          |             |  |  |  |  |
| fs         | 256fs       | 384fs       | 512fs       | 768fs       |  |  |  |  |
| 32kHz      | 8.192MHz    | 12.288 MHz  | 16.384 MHz  | 24.576 MHz  |  |  |  |  |
| 44.1kHz    | 11.2896 MHz | 16.9344 MHz | 22.5792 MHz | 33.8688 MHz |  |  |  |  |
| 48 kHz     | 12.288 MHz  | 18.432 MHz  | 24.576 MHz  | 36.864 MHz  |  |  |  |  |
| 96 kHz     | 24.576 MHz  | 36.864 MHz  | N/A         | N/A         |  |  |  |  |

表 1. 系统时钟举例

表 2. 工作模式选择

|      |      |      |      |             | (Z. Z. F. K. M. Z.) |                                              |                             |
|------|------|------|------|-------------|---------------------|----------------------------------------------|-----------------------------|
| Mode | CKS2 | CKS1 | CKS0 | Input Level | Master/Slave        | MCLK                                         | SCLK                        |
| 0    | L    | L    | L    | CMOS        | Slave               | 256/384fs(8k≤fs≤96k)<br>512/768fs(8k≤fs≤48k) | ≥48fs 或 32fs <sup>(1)</sup> |
| 1    | L    | L    | Н    |             |                     | Reserved                                     |                             |
| 2    | L    | Н    | L    | CMOS        | Master              | 256fs(8k≤fs≤96k)                             | 64fs                        |
| 3    | L    | Н    | Н    | CMOS        | Master              | 512fs(8k≤fs≤48k)                             | 64fs                        |
| 4    | Н    | L    | L    |             |                     | Reserved                                     |                             |
| 5    | Н    | L    | Н    |             |                     | Reserved                                     |                             |
| 6    | Н    | Н    | L    | CMOS        | Master              | 384fs(8k≤fs≤96k)                             | 64fs                        |
| 7    | Н    | Н    | Н    | CMOS        | Master              | 768fs(8k≤fs≤48k)                             | 64fs                        |


(1) 当 SCLK = 32fs, SDTO 输出 16 位数据




#### 音频接口格式

两种不同的数据格式通过 DIF 引脚(表 3)选择。在两种模式中,串行数据格式是以最高位优先且以 2的补码的格式。在 SCLK 时钟的下降沿发生时 SDTO 时钟输出。音频接口支持两种模式(主从机模式)。 在主机模式, SCLK 和 LRCK 输出频率与 fs 的关系符合 SCLK 频率为 64fs, LRCK 频率为 1fs。

| 衣 3. 百殃按口匹拌 |     |                            |      |               |     |  |  |  |  |  |
|-------------|-----|----------------------------|------|---------------|-----|--|--|--|--|--|
| Mode        | DIF | SDTO                       | LRCK | SCLK          | 图名  |  |  |  |  |  |
| 0           | L   | 24bit, 最高位对齐               | H/L  | ≥48fs 或 32fs  | 图 1 |  |  |  |  |  |
| 1           | н   | 24bit. I <sup>2</sup> S 兼容 | I/H  | ≥ 48fs 或 32fs | 图 2 |  |  |  |  |  |





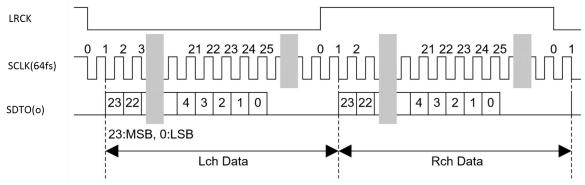
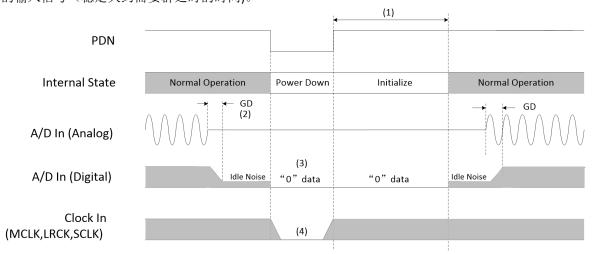



图 2. Mode 1 时序

# 数字高通滤波器


ADC 有一个数字高通滤波器来消除直流失调。高通滤波器的截止点是 1.0Hz(@fs = 48kHz)并且随着 其采样频率(fs)而扩展。

顶点光电子商城 版本号: V1.2 2021.08.20 共17页 第11页



#### 掉申

使 PDN= "L"时, MS5358 被置为掉电模式, 数字滤波器同时被复位。在上电之后应该进行一次复 位。在掉电模式中, VCOM 为 AGND 电平。当出现掉电模式之后一个模拟初始化周期开始。其中主模 式下 4129 个 LRCK 时钟周期而从模式下 4132 个 LRCK 时钟周期后,输出数据 SDTO 有效。在初始化期 间两个通道的 ADC 数字数据输出被置为 2 的补码 "0"。初始化结束之后 ADC 的输出才逐渐符合对应 的输入信号(稳定大约需要群延时的时间)。



- (1) 从模式 4132/fs, 主模式 4129/fs
- (2) 模拟输入对应的数字输出之间有群延时(GD)
- (3) 在掉电状态 A/D 输出"0"
- (4) 当外部时钟 (MCLK,SCLK 和 LRCK) 停止时, MS5358 应该处于掉电状态

#### 系统复位

在上电后, PDN="L", MS5358会被立即复位。在从机模式, MCLK 退出复位和掉电状态之后内 部时序通过 LRCK 的上升沿(模式 1 为下降沿)开始工作。直到 LRCK 输入否则需要将 MS5358 一直处 于掉电状态。在主机模式,当 MCLK 输入,内部时序才开始。



#### 系统设计

图 3 展示了系统连接图。

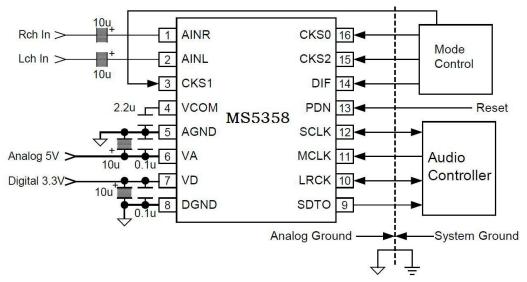



图 3. 典型连接图

- 1. MS5358 的 AGND 和 DGND 应该和外部数字器件(MPU,SDP 等)的地分开排布
- 2. 所有的数字输入引脚不应该悬空
- 3. CKS1 引脚应该被连接到 VA 或 AGND

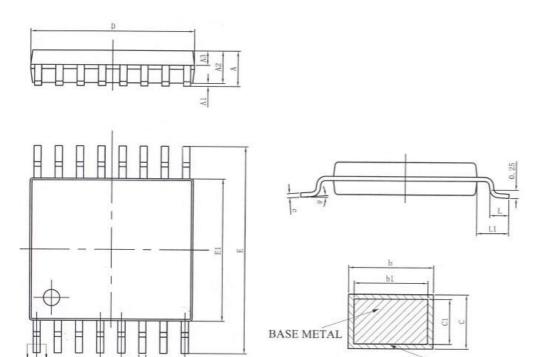
#### 地和电源退耦

MS5358 需要特别小心电源和地的排布。另外如果 VA 和 VD 分开,它们的上电顺序并不是关键。 MS5358 的 AGND 和 DGND 一定要连接在同一个模拟地上。系统的模拟地和数字地应该被连在一起,并 且要靠近印刷电路板地的供电处。退耦电容应该尽可能靠近 MS5358,并且小的陶瓷电容应该靠最近。

#### 电源基准

模拟电压输入范围是由 VA 设置, VCOM 是 50%的 VA。一个 2.2uF 电容贴在 VCOM 引脚。为了避 免带入 MS5358 不需要的藕和, 所有信号特别是时钟应该远离 VCOM 引脚。

#### 模拟输入


ADC 输入是单端而且内部通过 20kΩ电阻偏置在共模电压(50%VA)(典型@fs=48kHz)。输入信号范围 随着电源电压扩张,正常情况为 0.6\*VA Vpp(典型)。ADC 输出数据格式是 2 的补码。内部高通滤波器消 除直流失调电压。

顶点光电子商城 版本号: V1.2 2021.08.20 共17页 第13页 https://www.vertex-icbuy.com/

WITH PLATING



# 封装外形图



| 符号    | 毫米      |      |      |  |  |
|-------|---------|------|------|--|--|
| 11) 5 | 最小      | 典型   | 最大   |  |  |
| А     | -       | -    | 1.20 |  |  |
| A1    | 0.05    | -    | 0.15 |  |  |
| A2    | 0.90    | 1.00 | 1.05 |  |  |
| A3    | 0.39    | 0.44 | 0.49 |  |  |
| b     | 0.20    | -    | 0.29 |  |  |
| b1    | 0.19    | 0.22 | 0.25 |  |  |
| С     | 0.13    | -    | 0.18 |  |  |
| c1    | 0.12    | 0.13 | 0.14 |  |  |
| D     | 4.86    | 4.96 | 5.06 |  |  |
| Е     | 6.20    | 6.40 | 6.60 |  |  |
| E1    | 4.30    | 4.40 | 4.50 |  |  |
| е     | 0.65BSC |      |      |  |  |
| L     | 0.45    | 0.60 | 0.75 |  |  |
| L1    | 1.00BSC |      |      |  |  |
| θ     | 0       | -    | 8°   |  |  |



# 印章与包装规范

1. 印章内容介绍



产品型号: MS5358 生产批号: XXXXXX

2. 印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

3. 包装规范说明

| 型号     | 封装形式    | 只/盘  | 盘/盒 | 只/盒  | 盒/箱 | 只/箱   |
|--------|---------|------|-----|------|-----|-------|
| MS5358 | TSSOP16 | 3000 | 1   | 3000 | 8   | 24000 |

顶点光电子商城 版本号: V1.2 2021.08.20 共17页 第15页



### 声明

- 瑞盟保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息 是否完整。
- 在使用瑞盟产品进行系统设计和整机制造时,买方有责任遵守安全标准并采取相应的安全措施, 以避免潜在失败风险可能造成的人身伤害或财产损失!
- 产品提升永无止境,本公司将竭诚为客户提供更优秀的产品!





### MOS电路操作注意事项

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。



+86-181 2023 5245



武汉市江夏区光谷大道联 享企业中心G栋二单元901



https://www.vertex-icbuy.com/

室